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e Normalizing flows often surprisingly fail to
distinguish between in- and out-of- 4
distribution data: why? X1°20 I I /

e Flows learn local pixel correlations and
generic image-to-latent-space 15
transformations not specific to the target L MOtMNIST
Image dataset \

e Modifying the architecture of flow coupling 5
layers, we can bias the flow towards
learning the semantic structure of the

target data, improving OOD detection RealNVP trained on
FashionMNIST
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Out-of-distribution detection

e Goal: detect inputs that are different from the training data

e [mportant in many safety-critical applications

e | ikelihood-based generative models are attractive for OOD detection:
we can reject inputs that get low likelihood

Normalizing flows

e Deep generative models based on invertible neural networks
e \We can compute density of the data exactly via change of variables
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Inductive biases

e Maximum likelihood training encourages solutions which concentrate all
mass on training data, i.e. overfit

¢ The likelihood assignment outside training data will be determined by
inductive biases of the model

would work for

anomaly detection

Latent space

e There is a direct correspondence between image and latent representation
coordinates, the input shape is often visible in latent representation
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Inductive biases of flows

_ neural network
e Coupling layers: e.g. ResNet
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e X is splitinto x;; and X, Using masking:
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checkerboard squeeze layer channel-wise

What are coupling layers doing?

e Affine coupling layer predicts scale and shift which directly model masked pixels
e The objective pushes values s to be large while keeping the norm ||z]|| small:

as a result (—1) is approximating masked input and s represents the confidence

of approximation 1
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(a) Checkerboard (b) Checkerboard, OOD - - y N

(c) Horizontal (d) Horizontal, OOD

e Horizontal mask should make it more challenging to predict masked pixels
e However, the layers learn to co-adapt and encode information to be used
In subsequent layers
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Bigger datasets

e \We observe similar results for flow trained on ImageNet: coupling
layers can predict inputs for both in-distribution and OOD data
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(a) Log-likelihoods (b) ImageNet input, in-distribution (c) CelebA input, OOD

Changing inductive biases

¢ \We change the masking strategy to avoid coupling layer coadaptation and

overfitting to local color correlations
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e \We introduce low-dimensional bottlenecks to the sr-networks

e The lower the dimension of the bottleneck, the better the ranking of
OOQOD data
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Image embeddings

e Flows applied to embeddings extracted with a pre-trained CNN instead of
raw pixels can detect OOD inputs

RealNVP trained on images RealNVP trained on embeddings
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C) https://qgithub.com/PolinaKirichenko/flows_ood
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