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Overview

We propose HCL, a Hybrid generative-discriminative approach to

Continual Learning for classification

e Model each task and each class with a normalizing flow

e Same flow is used to learn data distribution, classify data, identify task
changes and avoid forgetting

e Strong performance on a range of problems in task-aware and
task-agnostic settings
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Modeling the data distribution
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HCL approximates the data distribution with a single normalizing flow,
with each class-task pair (y, t) corresponding to a unique Gaussian in
the latent space

e Train via maximum likelihood

o Make predictions via Bayes rule:
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Task boundary identification

HCL uses a method based on Density of States Estimation (DoSE;
Morningstar et al.): check that the statistics extracted by the flow model
are within the typical set

Task-agnostic continual learning
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e Sequence of tasks, each with the same set of classes

e We need to avoid forgetting old tasks when training on new tasks

e Task agnostic: we do not have task IDs ¢, model has to detect task
boundaries
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Normalizing flows

e Deep generative models based on invertible neural networks
e We can compute density of the data exactly via change of variables
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Avoiding forgetting
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e Save a snapshot ]3()1:) of the model after detecting task k
e Generate data 15 ~ ﬁg)(ﬂy, t)
o Generative replay: maximize log px(zr|y,t)or

o Functional Regularization: minimize || fo(2g) — fow (2R)| 2
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Latent maps

HCL-FR restricts the model more than GR: the locations of replay
samples in the latent space coincide for HCL-FR and the model trained
on the first task.

Results

(a) Split MNIST (c) SVHN-MNIST

HCL provides strong performance, especially on SVHN-MNIST where it
achieves almost zero forgetting and significantly outperforms ER.

(a) Split CIFAR-10

On CIFAR, we train the models on EfficientNet embeddings. HCL
outperforms CURL (Rao et al.) and Adam and performs on par with
experience replay with a large replay buffer.

HCL-FR provides better results than HCL-GR overall.




