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UNCERTAINTY IN DEEP LEARNING 
Automated diagnosis: human-in-the-loop 
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"Benchmarking Bayesian Deep Learning with Diabetic Retinopathy Diagnosis" by Angelos Filos et al. 



Consider a simple linear regression problem: 
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BAYESIAN MACHINE LEARNING
Standard linear regression: 
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We want to model uncertainty over parameters of the model
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BAYESIAN MACHINE LEARNING
Step 1: introduce a prior distribution           over parameters 
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Step 2: Compute posterior                 using Bayes rule 
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BAYESIAN MACHINE LEARNING
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Epistemic uncertainty is our 
uncertainty over the model 

‣ Grows with     because 
uncertainty in      is multiplied by  

Aleatoric uncertainty is our 
uncertainty over the data for a 
fixed model, e.g. noise.
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BAYESIAN MACHINE LEARNING: TWO TYPES OF UNCERTAINTY
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Epistemic uncertainty: non-linear model 
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BAYESIAN MACHINE LEARNING: TWO TYPES OF UNCERTAINTY
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epistemic



‣ We combine aleatoric and epistemic uncertainties via BMA: 

‣ Ignoring the uncertainty in the posterior over       leads to overconfident 
predictions
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BAYESIAN MACHINE LEARNING: BAYESIAN MODEL AVERAGING
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CALIBRATION
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"Benchmarking Bayesian Deep Learning with Diabetic Retinopathy Diagnosis" by Angelos Filos et al. 
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�16

healthy

healthy

healthy

healthy

healthy

confidence prediction correct



‣               should represent probabilities of belonging to a class 

‣ Neural networks are often over-confident in their predictions
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UNCERTAINTY: OVERCONFIDENCE IN NEURAL NETWORKS
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EXPECTED CALIBRATION ERROR (ECE)
ECE is the expected difference between model’s confidence and its 
accuracy 
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"On Calibration of Modern Neural Networks" by Chuan Guo, Geoff Pleiss, Yu Sun and Kilian Q. 
Weinberger

confidence confidence
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BAYESIAN DEEP LEARNING
‣ In Bayesian deep learning we model posterior distribution over the 

weights of neural networks 

‣ In theory, leads to better predictions and well-calibrated uncertainty 
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"Weight Uncertainty in Neural Networks" by Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, 
Daan Wierstra

Standard DNN Bayesian DNN



Bayesian inference for deep neural networks is extremely challenging 

‣ Posterior is intractable 

‣ Millions of parameters 

‣ Large datasets 

‣ Unclear which priors to use
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BAYESIAN DEEP LEARNING: CHALLENGES
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Posterior Approximation: 

‣ Laplace Approximation 

‣ Variational Inference 

‣ Markov Chain Monte Carlo 

‣ Geometrically Inspired Methods (see seminar!) 
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HOW CAN WE DO APPROXIMATE BAYESIAN INFERENCE?
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Approximate posterior with a Gaussian  

‣                            mode (local maximum) of   

‣   

‣ Only captures a single mode
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LAPLACE APPROXIMATION
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We can find the best approximating distribution within a given family with 
respect to KL-divergence 

‣     

‣ If                          ,  then  
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VARIATIONAL INFERENCE
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MARKOV CHAIN MONTE CARLO: SGLD
We can produce samples from the exact posterior by defining specific 
Markov Chains
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MCMC samples

‣ We can modify SGD to define a 
scalable MCMC sampler



LOSS SURFACES OF  
NEURAL NETWORKS
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‣ A tool for understanding generalization 

‣ Better training methods motivated by geometric intuition 

‣ Better approximate Bayesian Inference 

                                           , so understanding loss surfaces is crucial for 
approximate Bayesian inference 
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LOSS SURFACES: WHY DO WE CARE?
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‣ We can use loss surface visualizations to better understand properties 
of DNNs 

Visualizations created by Javier Ideami 
More great visualizations available at https://losslandscape.com/ 
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More great visualizations available at https://losslandscape.com/ 
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LOSS SURFACE VISUALIZATIONS
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‣ Adding skip connections makes the loss landscape more smooth 

First reported in "Visualizing the Loss Landscape of Neural Nets" by Hao Li, 
Zheng Xu, Gavin Taylor, Christoph Studer and Tom Goldstein
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MODE CONNECTIVITY AND GLOBAL STRUCTURE OF LOSS LANDSCAPES
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‣ When we train networks from different initializations, we get different 
solutions 

‣ If we look along line segment connecting independently trained 
solutions, loss goes up a lot 

‣ Does this mean local optima are isolated from each other?
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MODE CONNECTIVITY:  
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‣ Turns out independently trained solutions can be connected by paths of 
low loss 

‣ These paths are very simple to find and can take very simple shapes
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MODE CONNECTIVITY VISUALIZATION  

HOW DO WE BUILD NEURAL NETWORKS WE CAN TRUST?
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MODE CONNECTIVITY VISUALIZATION  

HOW DO WE BUILD NEURAL NETWORKS WE CAN TRUST?
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LOSS SURFACES: WHY DO WE CARE?
‣                                            , so understanding loss surfaces is crucial for 

approximate Bayesian inference 
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MODE CONNECTIVITY: IMPLICATIONS
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‣ Fast ensembling methods 

‣ Better training methods 

‣ Better approximate Bayesian deep learning 

See the seminar talk!
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FLATNESS AND GENERALIZATION
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‣ Intuitively, flat solutions that lie in flat regions of the loss surface should 
generalize better
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FLATNESS AND GENERALIZATION
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‣ Intuitively, flatness corresponds to higher margin

Results from "Understanding Generalization through Visualizations" by W. Ronny Huang, 
Zeyad Emam, Micah Goldblum, Liam Fowl, Justin K. Terry, Furong Huang, Tom Goldstein
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FLATNESS AND GENERALIZATION: BAYESIAN PERSPECTIVE
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SWA: GEOMETRICALLY MOTIVATED TRAINING METHOD
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‣ SWA is a training method for deep learning, motivated by mode 
connectivity. 
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SWA: GEOMETRICALLY MOTIVATED TRAINING METHOD
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‣ SWA finds a flatter solution in the loss surface, and achieves better 
generalization
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LOSS SURFACES: WHAT DO WE KNOW?
Loss Surfaces of Neural Networks are extremely complex: 

‣ Live in million-dimensional parameter spaces 

‣ Highly Non-convex 

‣ Very Multimodal
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Results from "Loss Landscape Sightseeing with Multi-Point Optimization" by 
Ivan Skorokhodov and Mikhail Burtsev




