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“But we do not accept this fate with the torpor of other city dwellers.”
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“panic city”

the financial and commercial district of London, England.
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UNCERTAINTY IN DEEP LEARNING

Automated diagnosis: human-in-the-loop

- &‘)@
f

uncertainty
test (e.g. Opred; Hpred)

ypred /
Probabilistic
Model

"Benchmarking Bayesian Deep Learning with Diabetic Retinopathy Diagnosis" by Angelos Filos et al.
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BAYESIAN MACHINE LEARNING

Consider a simple linear regression problem:

y=wz+e €~N(0,o?)
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BAYESIAN MACHINE LEARNING

Standard linear regression:

N N
1
mgx;log./\/’(yﬂwwi, 0%) min — ;(yi — w;)?

Loss
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BAYESIAN MACHINE LEARNING

Standard linear regression:

- ’LUSUZ

mnglog./\/’(yq;|wx7;,a2) — IIllIl—
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We want to model uncertainty over parameters of the model

Loss
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BAYESIAN MACHINE LEARNING

Step 1: introduce a prior distribution p(w) over parameters
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BAYESIAN MACHINE LEARNING

Step 2: Compute posterior p(w|D) using Bayes rule

p(D|w)p(w)
p(D)

p(w|D) =

posterior
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BAYESIAN MACHINE LEARNING: POSTERIOR CONTRACTION

p(D]w)p(w)
p(D)

p(w|D) =

posterior
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BAYESIAN MACHINE LEARNING: POSTERIOR CONTRACTION

p(D|w)p(w)
p(D)

p(w|D) =

posterior 15 | 3
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BAYESIAN MACHINE LEARNING: TWO TYPES OF UNCERTAINTY

Epistemic uncertainty is our
uncertainty over the model

» Grows with T because
uncertainty in w is multiplied by x

Aleatoric uncertainty is our
uncertainty over the data for a
fixed model, e.g. noise.

Epistemic Uncertainty

Aleatoric Uncertainty
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BAYESIAN MACHINE LEARNING: BAYESIAN MODEL AVERAGING

Aleatoric Uncertainty

Epistemic Uncertainty

X Predictive Uncertainty
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BAYESIAN MACHINE LEARNING: TWO TYPES OF UNCERTAINTY

Epistemic uncertainty: non-linear model
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BAYESIAN MACHINE LEARNING: BAYESIAN MODEL AVERAGING

» We combine aleatoric and epistemic uncertainties via BMA:

p(y*|a*, D) = / p(y*|*, w)p(w|D)dw

w

» Ignoring the uncertainty in the posterior over w leads to overconfident
predictions



HOW DO WE BUILD NEURAL NETWORKS WE CAN TRUST? 15

CALIBRATION

confidence  prediction
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"Benchmarking Bayesian Deep Learning with Diabetic Retinopathy Diagnosis"” by Angelos Filos et al.
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CALIBRATION

confidence prediction correct
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UNCERTAINTY: OVERCONFIDENCE IN NEURAL NETWORKS

» p(y|x) should represent probabilities of belonging to a class

» Neural networks are often over-confident in their predictions

confidence prediction
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EXPECTED CALIBRATION ERROR (ECE)

ECE is the expected difference between model’s confidence and its
accuracy

Uncal. - CIFAR-100 Temp. Scale - CIFAR-100
ResNet-110 (SD) ResNet-110 (SD)

B Outputs

B Outputs
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"On Calibration of Modern Neural Networks" by Chuan Guo, Geoff Pleiss, Yu Sun and Kilian Q.
Weinberger
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BAYESIAN DEEP LEARNING

> In Bayesian deep learning we model posterior distribution over the
weights of neural networks

> In theory, leads to better predictions and well-calibrated uncertainty

Standard DNN Bayesian DNN

"Weight Uncertainty in Neural Networks" by Charles Blundell, Julien Cornebise, Koray Kavukcuoglu,
Daan Wierstra
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BAYESIAN DEEP LEARNING: CHALLENGES

Bayesian inference for deep neural networks is extremely challenging
» Posterior is intractable

» Millions of parameters

» Large datasets

» Unclear which priors to use

o) — PPwpw)  p(Djw)p(w)
p( ‘D) p(D) fw, p(D|w’)p('w’)dw’
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HOW CAN WE DO APPROXIMATE BAYESIAN INFERENCE?

Posterior Approximation:
» Laplace Approximation
» Variational Inference

» Markov Chain Monte Carlo

» Geometrically Inspired Methods (see seminar!)

21
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LAPLACE APPROXIMATION

Approximate posterior with a Gaussian N(w\u, A_l)
» W = WpAP mode (local maximum) of p(wlD)

» A= —VVlog[p(D|w)p(w)]

» Only captures a single mode .

0.3 A
0.2

0.1 A
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VARIATIONAL INFERENCE

We can find the best approximating distribution within a given family with
respect to KL-divergence

 KL(qllp) = /

w

w ) 10 Q(w) w
q(w)] gp(wID)d

» If g =N(u,X), then miélKL(QHP)
K, 04 |

0.2 -

0.1 A
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MARKOV CHAIN MONTE CARLO: SGLD

We can produce samples from the exact posterior by defining specific
Markov Chains

» We can modify SGD to define a
scalable MCMC sampler

g © Oo0O@E @

/\ MCMC samples

05 A

04 A
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p(w|D)
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LOSS SURFACES: WHY DO WE CARE?

» Atool for understanding generalization
> Better training methods motivated by geometric intuition
> Better approximate Bayesian Inference

¢ loss = — log p(w|D), so understanding loss surfaces is crucial for
approximate Bayesian inference
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LOSS SURFACE VISUALIZATIONS

» We can use loss surface visualizations to better understand properties
of DNNs

Visualizations created by Javier Ideami
More great visualizations available at https://losslandscape.com/
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LOSS SURFACE VISUALIZATIONS

More great visualizations available at https://losslandscape.com/
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LOSS SURFACE VISUALIZATIONS

Adding skip connections makes the loss landscape more smooth

NON SKIP

EPOCH

1.18

First reported in "Visualizing the Loss Landscape of Neural Nets" by Hao Li,
Zheng Xu, Gavin Taylor, Christoph Studer and Tom Goldstein
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MODE CONNECTIVITY AND GLOBAL STRUCTURE OF LOSS LANDSCAPES

» When we train networks from different initializations, we get different
solutions

» If we look along line segment connecting independently trained
solutions, loss goes up a lot

» Does this mean local optima are isolated from each other?
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MODE CONNECTIVITY.

» Turns out independently trained solutions can be connected by paths of
low loss

» These paths are very simple to find and can take very simple shapes
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MODE CONNECTIVITY VISUALIZATION
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OPTIMA OF COMPLEX LOSS FUNCTIONS CONNECTED
BY SIMPLE CURVES OVER WHICH TRAINING AND TEST
ACCURACY ARE NEARLY CONSTANT.
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MODE CONNECTIVITY VISUALIZATION

;WM}N‘Msmm‘mwm T ik AT R e

MODE CONNECTIVITY

/) ,/,f‘,/, '{
OPTIMA OF COMPLEX LOSS FUNCTIONS CONNECTED 7 /
BY SIMPLE CURVES OVER WHICH TRAINING AND TEST v s
ACCURACY ARE NEARLY CONSTANT. K y TR
24 4 /
) \\ \\\ " ‘\ﬁ ,l: ! WA O . Al | '~‘ Nl / / ’,{/ % forf /

\\\\\\\m}\. w u‘ A\ ;h | | , , Ay oy (s

‘:\‘;l..m.l "‘ ,@\ X-Ml\ : * “".‘ | /H ,

\¢ \‘ N \\\u“l”\bk\ “\\Y“‘Qi\ﬂw f‘) l'. 4‘7!4 NIRRT 4 1

\\\\ «\tn\l \\,‘Q,‘J % % \‘p ' l‘f{ 1‘. il j”

(A *”t“ “w\\“‘w\t\“’f \).np f "‘l ;.&" ‘f;’t’,,'}',
SN

v ‘, : 1 ,'l.. J :Ij" .. ‘ “ "',/ 4 ) “ ' -
} ['.“i. W\ \‘ s‘r& \s‘l\ ( .,‘ _ } ';', : v"i » "v ﬁ



HOW DO WE BUILD NEURAL NETWORKS WE CAN TRUST? 34

LOSS SURFACES: WHY DO WE CARE?

» loss = — log p(w|D), so understanding loss surfaces is crucial for
approximate Bayesian inference
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MODE CONNECTIVITY: IMPLICATIONS

> Fast ensembling methods
» Better training methods

> Better approximate Bayesian deep learning

See the seminar talk!

35
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FLATNESS AND GENERALIZATION

> Intuitively, flat solutions that lie in flat regions of the loss surface should
generalize better

—— Train loss
— Test error

Wide Minimum Sharp Minimum
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FLATNESS AND GENERALIZATION

> Intuitively, flatness corresponds to higher margin

(a) 100% train, 100% test (b) 100% train, 7% test

(¢) Minimizer of network in (a) above (d) Minimizer of network in (b) above

Results from "Understanding Generalization through Visualizations" by W. Ronny Huang,
Zeyad Emam, Micah Goldblum, Liam Fowl, Justin K. Terry, Furong Huang, Tom Goldstein
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FLATNESS AND GENERALIZATION: BAYESIAN PERSPECTIVE
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SWA: GEOMETRICALLY MOTIVATED TRAINING METHOD

» SWA is a training method for deep learning, motivated by mode
connectivity.

Test error (%) Test error (%) Train loss
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SWA: GEOMETRICALLY MOTIVATED TRAINING METHOD

» SWA finds a flatter solution in the loss surface, and achieves better
generalization
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LOSS SURFACES: WHAT DO WE KNOW?

Loss Surfaces of Neural Networks are extremely complex:
» Live in million-dimensional parameter spaces
» Highly Non-convex

» Very Multimodal

Results from "Loss Landscape Sightseeing with Multi-Point Optimization" by
Ivan Skorokhodov and Mikhail Burtsev
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MODE CONNECTIVIT

OPTIMA OF COMPLEX LOSS FUNCTIONS CONNECTED
BY SIMPLE CURVES OVER WHICH TRAINING AND TEST
ACCURACY ARE NEARLY CONSTANT.
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